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SUMMARY

Severel methods of obtaining the time response of linear systems to
either a unit impulse or an arbiltrary input from frequency-response date
are described and compared.

Comparisons indicate that all the methods gilve good accuracy when
applied to a second-order system; the main difference is the required
computing time. Several of the methods when applied to higher order
systems require excessive computing time in order to obtain the same
degree of accurecy. The methods generally classified as inverse Laplace
trensform methods were found to be most effective in determining the
response to a unit impulse from frequency-response data of higher order
systems.

Some discussion and examples are given of the use of the methods
as flight-data-analysis techniques 1n predicting loads end motions of a
flexible aircraft on the basis of simple calculations when the ailrcraft
frequency response is known.

INTRODUCTION

The frequency-response type of analysis used on linear systems has
found extensive application in the field of aircraft stebility and in
the determination of overall dynamic characteristics of en aircraft. Im
fact the current trend to perform analysis on flight test data in frequency-
response form appears to be gaining favor especlally In the case of flex-
ible aircraft. Considerable emphasis has, therefore, been given to methods
of determining 'bhe frequency response of a system from transient responses.
A concise rsumé and comparison of methods for obtaining the frequency
response from transient responses are presented in reference 1.

This paper briefly considers the next step in the process - the
converting of the information contained in a frequency response to the
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time plane in the form of the response to a unit impulse. For certain
purposes this conversion gives data in more useful form. The response

of & linear system to a unit impulse may be used in conjunction with
Duhamel's (superposition) integral to determine (1) the aircraft transient
response to any type of imput or (2) the input required to cause any
required alrcraft trensient response.

It eppears that methods of converting frequency-response data to
transient data present a flight-data-analysis technique which permits
the prediction of ailrcraft motions and loads for a flexible aircraft
without knowledge of the equations of motion relating the input and
output. These methods also bypass the need for computing transfer-
function coefficients or stability derivatives in predicting these loeds
and motions. Such predictions are important in anticipating the motions
end loads for more hazardous aircraft maneuvers. These methods are also
useful in predicting time responses of complicated linear systems whose
frequency response is known.

The purpose of this report is to collect end briefly compare a few
of the methods now avallable for performing this operation. The methods
are compared on the basis of acecuracy, computing time required, and
applicability of the method to higher order systems. Some extensions of
these methods are also given. With such information available, engineers
may “then select the method which best fite their needs.

SYMBOLS
F(t) function of time
H(iw) Pfrequency response of a system
H(s) transfer function (in terms of Laplace varisble s)
relating input and output
h(t) time response of a system to a unit impulse
N
J index of summation
K, ;Kp0Ks transfer coefficients defined by equation (8)
K,L limits on sumation of P-transform

M Mach number
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m index of sumration of P-transform

N total number of deta points used in solution of
equation (9)

n limit of summation

P polynominal trensform operator

Re EI(iw)] real part of frequency response defined by equation (21)

r ordinete of pulse used to £it Re[HE(iw)]

8 Laplace variable, c¢ + iw

t | time, sec

x output

x(s) laplace transform of x(t)

x(%) response of a system to an arbiltrary input

Ilag amplitude ratio of frequency response

A indicates increment

5] input

5(t) time history of input to a linear system

] pitching velocity, radians/sec

T value of time, sec

¢ phase angle, deg

¢x5 phase angle between output x and input & of frequency
response; negative phase angles indicate lag

o circular frequency, redians/sec

wy damped natural freguency, ra.dians/ sec

wp fundementel frequency, radians/ sec

@, undamped natural frequency, rediams/sec
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Subscripts:

e elevator

i index of summation indicating row

J index of summation indicating colum

-~ A tilde indicates polynominal trensform of fumction; for example,
F(x) denotes polynominal transform of F(t).

DESCRIPTION AND DISCUSSION OF METHODS

In this section the methods for determining the response to a wmit
impulse and the methods for obtaining the response to arbitrary inputs
are discussed.

The methods for obtaining the time response to a unit impulse from
frequency-response deta fall into several basic catbegories which may be
generally classified as follows:

(1) Inverse ILeplace transform methods
(2) Fourier method
(3) other methods

These methods are briefly outlined to indicate the techniques involved.’
In order to describe the computations required and the accuracies
obtalned, each method is applied to the frequency-response data of fig-
ure 1 which defines a simple second-order system described by +the
‘transfer-function

x 1
=(s) = (1)
5 g2 + 68 + 10

It is usually intended that these methods be applied to higher order’
systems as will be shown later in the paper. No attempt is made to
repeat the development of the methods since this information may be
obtained from the references. .

Inverse Laplace Transform Methods

Floyd's method.- The method developed by George F. Floyd and described

in detaeil in reference 2 is referred to as Floyd's method. Floyd shows



NACA TN 3701 5

that the inverse Laplace transform h(t) of H(s) given by the
integral

1 ct+ic

n(t) = o ) H(s)e®® as (2)
c-]o

is for all positive values of time equivalent +to
2 [}
n(t) = ;f Re [H(10)] cos to dw (3)
0

This operation is based on the assumptions that H(s) may be written
as the ratio of two rationmal polynominals in s with real and constant.
coefficients, that 1im H(s) = O, and that H(s) has no poles in the

8—x
right half of the s-plane or on the imaginary axis. The procedure
for performing the integration required by equation (5) is to plot
Ref[H(iw)] against o and then to approximate -the exact shape with a
series of straight-line segments. The straight-line approximastion is
written as a sum of trapezoidal functions and equation (3) is applied
to each of the trapezoids; the resulting time functions due to each
trapezoid are then added to obtain h(t).

A simple 1llustration is shown in sketch A:

A
Re[H(iw)] %//r?% % /
= ()
B 2 %
Sketch A

The time function associated with a typical trapezoid (as shown by the
cross-hatched section) may be expressed as

_2 sin a)a't\ sin Ayt
{5 ®
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vhere
_ & ta
T =773
A2=a.b%-
Ap =Ty

In general for n trapezolds the time response is given by

bin wyt\ (sin Agt
n(t) = 2 J 3
(%) gd\mt/ e (5)
In figure 2 the real part Re [H(iwzl of the simple second-order
system computed from figure 1 is shown plotted against . The func-

tion h(%t) is then easily evaluated since tables of 59;5—-’—‘- are given-

in reference 2. In the upper part of figure 2, two stralght-line fits
to the Re[H(iw)] are shown, one a five-line fit and the other an eleven-
line £it. For clarity, however, only the points and not the connecting
lines of the fit are shown. In the lower part of figure 2 the resulting
responses to a unit impulse computed by Floyd's method are compared with
the exact response to & umit impulse. The accuracy of Floyd's method
depends on the number of lines used to fit the Re[H(iw]] and the loca-
tion of the cutoff frequency. The cutoff frequency is defined as the
meximum frequency et which the Re[H(iw)] was fitted. It should be
noted that the limits of the definite integral of equation (3) are 0O

to w; however, in the practical case the Re[H(iw)] is cut off at

sone finite frequency. This error is reflected at the low values of
time, especially at t = O. For a given number of lines, the accuracy
also depends on the Jjudicious f£it of the lines. .

Numerical-integration method.- In order to use automatic computing
machines to perform the inverse La.pla.ce transform method, the necessaxy
operations indicated by equation (3) are performed in the following
manner by using a mmericel-integration method. For a given value of-
time +, the product curve Re[H(iw)] cos tw is evaluated over the
range and integrated by numerical-integration techniques which give one
point on the time history of the response to a wnit impulse. By repesting
the above computation for all the desired values of time, the time response
can be obtained.
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This method was applied to the frequency-response data of figure 1.
The accuracy of the method is shown in figure 3. In the upper part of -
figure 3 the error due to the interval Aw chosen for the computation
is shown by the comparison between the circle and squere symbols. The
accuracy of the computation for the case of Aw = 1.0, as indicated by
the circle symbols, was not satlsfactory beyond + = 2.0 seconds. This
result is to be expected since the intervel Aw = 1.0 was too large to-
permit numericel-integration methods to perform adequately the integra-
tion required by equation (3).

Rectangular-pulse method.- A method for determining the time response-
to a unit impulse from frequency-response data has recently been given
in reference 3. It is referred to herein as the rectangular-pulse method.
The method involves the use of tables for time-plane values equivalenb
to unit rectangular pulses of the Re EE[(imﬂ The method requires fitting
the Re [H(:Lw)] with e series of rectengular pulses or a staircase fumec-
tion so that the area under the curve 1s equal to the area of the pulse
in each case as is shown in sketch B:

]

Re [H(iwﬂ T
T
i

Sketch B
This fitting although made visually should be made carefully. If the

ordinate of pulse 1 is deslgnated as rl, of pulse 2 as T5s and of

pulse n as 1r,, then the time response to a unit impulse correspond.ing
to this Re[H(ia))] is given by

n

n(t) =Y_ rjhj('b) (6)
J=1

The time functions hl(t), he(t), hn(t) associated with each of

the rectangulaxr pulses shown in sketch B are tabulated in reference 3.
These time functions are the inverse Fourier transforms of unit rectan-
gular pulses of the Re[H(iw}].

The method was applied to the frequency-response data of figure 1.
The fitting of the staircase function to the Re[H(iw)] is illustrated
in the upper pert of figure 4 and the accuracy of the method is demon-
strated in the lower part of figure 4. Again the error in the computed
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response to the unit impulse at +t = 0 is due to cutting off the
Re[i(iw)] at o = 20 radiens/sec and not integrating to « as indi-
cated by equation (3).

Fourier Method

Fourier response to unit impulse.- In reference 4, the response to
a unit step input is derived by the Fourler method. Differentiating
this response gives an expression by which the response to a unit impulse
mey be approximated. For a linear system characterized by its frequency

response with amplitude ratio Igl and phase angle ¢x8 » this expression
is

h(t) = -?L:ﬂi I’a—‘l (2n-1)ap °°° [(20. - 1)apt + (¢x5}(2n_1)mf] " ()

n=t

In using equation (7) the choice of the fundamental fpequency wp

determines the accuracy end length of the computations. Since the
accuracy is affected by wp it hes been found by experience that a

value - wp = %Q can be used as a good first estimate, where w, 1is the
unjamped natural frequency of the system. Instead of «y,, the value of
frequency at which the amplitude ratio peaks for a lightly damped system
mey be used. This value may be determined from the frequency response

of the system,

In table I the numerical computetion of h(t) for the system defined
by the frequency response of figure 1 is shown. In this computation,
1t terms were carried in the expression for h(t), and more accuracy mey
be obtained, of course, by carrying more terms. The accuracy of the
method is shown in figure 5 by the comparison between the computed and
exact response to the unit impulse.

Other Methods

Schumacher's method.- The method of reference 5 permits the computa-
tion of transfer-function coefficients by assuming the shape of the
transfer function releting the input and output and then curve fitting
this relation to the ailrcraft date in frequency-response form. Once the
transfer-function coefficients are known, the system is completely
specified since the response to a unit impulse input or any other arbi-
trary input mey then be computed by the normal methods available for
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solving differential equatioms. To illustrate the method a sample
computation 1s performed by using the system defined in figure 1. The
differential equation relsting input & and output x for the fre-
quency response shown In figure 1 is

D% + KyDx + Kpx = KB (8)

By applying the vector least-squares method of reference 5, the following
set of simultaneous equations is obtained:

_ @, ™~ = ,w - ~ 3
R =1 TR = CH L R i =
W G o2
s GER), o fmet oo @
W [ 2
o =C TR of ),| [z o bl
L — L J - J
where

l Isin¢

These equations are then solved simulitaneously for the transfer coeffi-
cients Kz, Xj, and Ky. From the form of equation (8), it is seen that

the response to a unit impulse input is given by the equation

K
n(t) = % e™®% gin aqpt (10)
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where
2
X
N A
and .

K
a::_l
2

A samplé computation 1s shown in teble IT. Table IT demonstrates
the computetlionsl steps Involved in solving for the -transfer coeffi-
cients Kl, KE’ and. K3 for the system defined in figure l. These

transfer coefficients are then substituted into equation (10), end a
plot of this function is compered with the exact response of the system
to a unit impulse input in figure 6.

This method gave additional information when applied to the second-
order system since the trensfer-function coefficients were determined in
the process of the computation. A reasonable smount of computing time
was- required, and good accuracy was obtained. The method, however,
requires previous knowledge of the form of the transform function
relating the input end oubtput. Use of the curve-£fitting method on the
higher order system did not prove too effective in determining all the
parameters of the flexible system. If the form of the transfer function
of the short periocd is essumed end fitted to that portion of the aircraft
frequency response associated with the short period then the method is
very effective in determining the short-period transfer-function
coefficients.

P-transform method.- The P-transform method, as described in
appendix A, differs from the other methods presented in this paper in
that the time response to a unit impulse can be determined directly
from a known response to a known srbitrary input. The computation is
carried out entirely in the time domain, bypassing the frequency plane
entirely, and does not require knowledge of the transfer function relating
the input and output. The method also represents a simple procedure for
using the response to & unit impulse and determining the response to a
given arbitreary iunput.

An exsmple of the method is shown in figure T in which the assumed
input 5(t) and output x(t) are given from which the response to the
unit impulse h(t) is computed. A comparison of the computed response
to a unit impulse and the exact response to a unit impulse is shown in
the lower part of figure 7.
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Response to Arbitrary Inputs

The procedure for obtalning the response to arbitrasxy inputs when
the response to the unit impulse is Imown 1s simply a matter of applying
Duhamel's integral to the response to the unit impulse and time history
of the arbitrary input. A numerical method of performing this operation
is shown in appendix A of reference 3.

The response to a unit step Input may be obtained by numerically
integrating the response to a unit impulse by using the integrating
metrix given in reference 5. In like manner, the response to a ramp
Input may be obtained by numerically integrating the response to a step
function. The response to a trianguler input is obtained by superposi-
tion of the responses to various ramp Inputs translated along the time
scale.

The response to an arbitrary input mey be obtained from the response
to & unit impulse by the P-transform method by use of equation (Alk) of
the appendix.

For directly determining the time response to an arbltrary input
from frequency-response dsta, the Fourier method is perhaps the best
¥nown. The general method is indicated in referénces 6 and 7. In general,
an input which can be expressed as a Fourier series can be represented as

5(t) = Aq +Z Cogy (P12 Dt + oy ) (11)

n=1

The response to the input given by equation (11) of a linear system
vhose amplitude ratio is %l and phase angle is ¢x8 can be written as

x(t) = By + Z smEltnft + ¢ + (¢xs) ] (12)

n=1

For a few specific shapes of inputs the values of By, Cnmf-, and
¢mbf of equation (12) are known. Two wave forms frequently used are the

square wave and triangular wave and examples of these are glven.
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Response to a square wave.- As indicated in reference 4 the Fourier
series for a unit square-weve input &(t) may be written as

=42
S(t_) 2+"n§1

e— sin(2n - 1)at (13)

and the response to this unit step input of a linear system of which the
amplitude ratio is l’g‘l and the phase angle is {5 is given by

. x '
x(t) = %I%{'Lpo + f-n:ﬂ I—al—é‘%“-:—lj)_—“f- sin Ean-l)mft + (¢x8) (&_l)wf:, (14)

The accuracy of the computation depends on the choice of the optimum
fundemental square-weve frequency p and, as before, a suiteble velue is

usually ap = 9-;1 vhere , is the lowest undamped natursl frequency of
the system.

Response to a triangular-wave input.- The specific form of the input
used in determining the time response to a triangular-wave Input is shown
in sketeh C:

5(t)
A

O |

\\ /, Ti
N s Te/ 2

Sketch C

where Tp 1is the total period of the input, Ty iIs the length of the
base in seconds, and & dis the maximum value of the input.

Without glving the analytical development, representation of the
Fourier series for this trlangular-wave input is given by
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8(t) =nZ=1 Cop.q 8l Ean - L)agt + ¢2n_1:| (15)
where
@ = % radisns/sec (16)
,-l-g Ty
Copq = o 1)2(%)|E. - cos(on - 1)n(mfﬂ in
and
Bo 4 = 180|% - (2n - 1)(%) (18)

The response to this triangular-weve Input of a linear system of which
the amplitude is Ig—{ and the phase sngle is ¢x5 is then

_S ¢ X inf{(en -1

Pen-1)ap * (¢"5) (2n-1)m;l W

Here agein a sultable f£irst aﬁproxima:bion is wp = % @, .

For a higher order system such as & linear system with several
structural modes (as indicated by peaks in the amplitude-ratio curve),
the choice of a fundemental frequency Wp becomes difficult inasmuch as

odd multiples of wp must give the natural frequency w, and the
frequency of each of the higher structural modes.
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If an ipput is nonperiodic and camnot be expanded into a Fourier
series directly, the Fourier transform of the input 1s used. The tables
of reference 3 may be used to determine numericelly the Fourier transform
of an arbitrary input. The procédure for computing the response of a
linear system to such en arbitrary input is briefly described as follows.
The Fourier transform of the output is formed by multiplying the Fourier
transform of the arbitrary input by the frequency response of the systenm,
which is the ratio of the Fourler transforms of the output and input.
The inverse Fourier transform of this product is then taken which 1s the
time response of the system to the arbitrary input. The tables of refer-~
ence 5 may also be used to perform the operation of the inverse Fourier
‘transform.

COMPARTISON AND USE OF METHEODS

Comparison of Methods

A comparison of the methods as applied ‘to the second-order system,
defined by the frequency response shown in figure 1, may be made by
noting the differences between the exact response to a unmit impulse and
the response computed by each of the methods shown in figures 2 to T.
From these figures there appears to be little difference between the
accuracy of any one method over the others, and in each case greater ,
accuracy may be obtalned at the cost of more computation. For the
comparisons shown, however, the computing time required by the
rectangular-pulse method wes significantly less than the time required
by the other methods. The Fourier response to a unit impulse required
the most time. A listing of the methods in the order of the computing
time required for the comparisons shown In figures 2 to T is glven as
follows:

Rectangular pulse (ref. 3)
Schumacher's (ref. 5)

Floyd's (ref. 2)

Numerical integration

Fourier response to a unit impulse

(A11 computations were performed on a desk-type computer.) -

A more severe test of the methods occurs vwhen they are applied to
linear systems of higher order. In order to demonstrate an application
of this type, a further comparison of the methods was made by applying
them to the system defined by the transfer fumetion

1 22
X(s) = > > 100 - V) (20)
8 4+ 6s + 10 s + O.4s + 100 s~ + 0.28 + 225
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The frequency response of this system is shown in figure 8. The real
pert of the frequency response shown in figure 9 was computed from
figure 8 by using the relation

Re[H(imﬂ = |g— cos P.g (21)

In figure 10 a comparison of the response to a unit impulse computed by
four of the methods is shown. For Floyd's method a 27-line fit to the
Re[H(iw)] shown in figure 9 was used. For the rectangular-pulse method,
the staircase fit to the Re[H(iw)] was made with the interval
Aoy =1 radia.n/ sec, and for the mmerical-integration method, an interval

= 0.5 radia.n/ sec was used. The response of the linear system defined
by equetion (20) t0 a triangular input shown in figure T of reference 3 was
used to compute the points shown in figure 10 for the P-transform method.
A time Interval of At = 0.1 second was used. The Fourier response to a
unit~impulse method was found to be impractical in this case because of the
large emount of computation required to obtain any accuracy. The accuracies
of each of the four methods illustrated appear to be equivalent.

Use of ‘the Response to a Unit Impulse as a
Flight-Data-Analysls Technique

As a further comparison of the methods applied to & higher order
system, a typical longitudinal mameuver (M = 0.82) for a flexible swept-
wing airplane has been analyzed. In this case the output was the
pitching-velocity response 8 at the center of gravity of the airplane
and the input was the elevator angle OJ.. The analysis of this maneuver
serves to demonstrate the use of the method of obtaining the time response
of linear systems to a unit impulse from frequency-response date as a
flight-data-analysis technique. The Fourier integrals of the output ©
and Input e were evaluated by using automatic computing equipment and
the methods of integration of product curves were used. The frequency
response obtained by dividing the Fourier integral of the oubtput by the
Fouriler integral of the input is shown in figure 11. The R:T-Sé—-(im)]

e
computed from the frequency response of figure 11 is shown in figure 12.
In figure 13 a comparison of the response to a unit impulse computed by
three of the methods is shown. For Floyd's method a 3T7-line fit to the

Re[-ag-(iw)] shown in figure 12 was used and hé(t) was computed at enough
e
values of time to define adequately its shape. For the rectangular-

pulse method, the staircase fit to the Re[ge—(iw)] was made with the
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intervel Am = 1 redisn/sec and, for the mmerical-integration method,
an intervel of Am = 0.5 radian/sec was used. In the case of the
numerical method, points are shown in figure 15 only at time intervels
of 0.1 second in order to compare accuracies. Several attempts were
mede to compute the response to the unit impulse by the P-transform
method using the original elevator inmput 5¢(t) and output &(t) shown
in figure 14. The computations were mede at time intervals ranging from
0.02 second £ At £ 0.1 second but did not yleld satisfactory accuracy.
It appears that this inaccuracy is primerily due to the semsitivity of

. the method to small errors in the first few texrms of the response or
input.

Time histories of the original elevator imput &g and-pitching-
velocity response 6 are shown in figure 1%. The elevator input 8e
has also been used as a forcing function with the response to a umit
impulse shown in figure 13 to compute & time history of ©. The Duhemel
method outlined in appendix A of reference 3 with a time interval of
0.05 second was used for these calculations. A comparison of this
computed 6O response with the original 6 response from a £light
test is shown in the lower part of figure 14. This comparison shows the
amount of error involved in the total computation procedure (transferring
the data in time-history form to frequency-response form, then to the
response to a unit impulse, and finally to the response to an arbitrary
input by means of Duhamel's integral).

Another f£light-test meneuver at M = 0.80 was selected with the
other conditions approximately the same as the previous date in order
to see how well the response to a unit impulse computed from one meneuver
could be used to predict the time response to an arbitrary input from a
different maneuver. The time histories of this maneuver are shown in fig-
ure 15. Also shown in the lower part of figure 15 is the &(t) response
calculated by application of Duhamel's integral to the response to a unit
impulse given in figure 13, and the elevator motion for the maneuver is
shown in the upper part of figure 15. A comparison of the computed and
measured O response in the lower pert of figure 15 gives some indication
of how well the motions of an aircraft can be predicted by a detalled

analysis of a single mameuver.
CONCLUDING REMARKS

Several methods were compared for obtalning the time response of
linear systems to either a unit impulse or arbitrary input from frequency-
response deta. The methods were compared on the basis of accuracy,
compubing time required, and applicability to higher order linear systems.
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The application of each of the methods to a simple second-order
system Indicated little difference between the accuracy of one method
over the others, and, in general, it would be expected that greater
accuracy could be obta.ined. for each of the methods at the cost of more
computing time.

For higher order systems the three methods generally classified as
inverse Laplace transform methods were most effective. They gave good
results for a moderate emount of computation. All of these methods are
based on the evaluation of the form of the inverse ILeplace transform
equation for positive values of time.

The methods generally classified as Fouwier methods gave good
accuracy when applied to the second-order system. The accuracy of these
methods was found to depend on the cholce of a fundamental frequency @p e

For simple systems a sultable value was found to be wp = 95!’* vhere w,

is the lowest natural frequency. For higher order systems the choice
of wp becomes more difficult. The Fourler response to a unit-impulse
method was found to be impractical in the case of higher order systems
because of the large smount of computation required to obtain accuracy.

Schumacher's method gave additional informetion when applied to the
second-order system since the transfer-function coefficients were deter-
mined in the process of the computation. This method required e reason-
able amount of computing time and gave good accuracy. The method,
however, requires previous knowledge of the form of the transfer fume-
tion releting the input and output. Use of the method on higher order
systems did not prove too effective in determing all the parameters of
the flexible system. A valuable use of the method was found in fitting
the known short-period transfer function to only the short-period portion
of the flexible-system frequency response to determine the short-period
transfer coefficients.

The P-trensform method is different from the other methods presented
in thet the time response to & umit impulse can be determined directly
from a known response to & known asrbltrary input. The computation is
carried out entirely in the time domain and bypasses the frequency plane
entirely. The method also represents a simple procedure for using the
response to a unit Impulse and determining the response to a glven
arbitrary input. The method, however, when applied to the £flight data
of this paper did not yield satisfactory accuracy. It appears this is
primerily due to the senslitivity of the method to errors in the first
few terms of the response or input.

For all the examples computed in this paper the rectangulsr-pulse
method of NACA Technical Note 3598 required less computing time, for the
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same degree of accuracy, than any of the other methods used to obtain
the time response to a unit Impulse from frequency-response data.

When an aircraft frequency response is known, it appears thet these
methods may be used as a flight-date-analysis technique which permits
prediction of aircraft motions and loads without knowledge of the equa-~
tions of motion relating the inputs and oubtpubts for a flexible alrcraft.

Langley Aeronasutical Taboratory,
National Advisory Committee for Aeronsutics,
Langley Field, Va., Merch 16, 1956.



NACA TN 3701 19
APPENDIX A
P-TRANSFORM METHOD

In reference 8.a linear operational calculus is introduced which
appears to be well adapted to the numerical analysis and synthesis of
linear systems. In this calculus a polynominal transform or P-transform
of a function F(t) is defined by the equation

P[F(t)] =F(x)
= :L F(mAt )™ (A1)

m=-K

where F(mt) sare the ordinates of F(t) at integral multiples of a
time interval At. The inverse P-transform is given by

F(t) = P'l[ﬁ(xﬂ (a2)

The superposition (convolution or Faltung) integral, which is also known
as Dubemel's integral, relates the imput &(t), output x(t), end
response to a unit impulse h(t) (also called a memory function) of a
linear system and is given by

t .
x(t) = f 8(t) h(t-t)ar (a3)

Bubb (ref. 8) shows that the P-transform of equation (A3) is
%(x) = At &(x) h(x) (ak)

In the synthesis problem the input &(t) and the output x(t) are
given and the response to the umit impulse h(t) is to be calculated.
This calculation is performed by forming the P-~transforms of x(:;) and
5(x) and dividing by ordinary polynominal division, X(x) by 8(x), to
get the P-transform of the response to the unit impulse
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h(x) = -]—'-:%i{l-
At 8(x)

= i hmxm (a5).

For practical cases, however, the summation is mede over a finite range
of t values. The inverse P-transform to h(x) +then gives h(t), the
time response to the unit impulse. An example of this operation is shown
in table ITI; the known input &(t) and output x(t) are shown in the
upper part of figure T, and the computed response to the unit impulse is
compared with the analytic solution in the lower part of figure 7.

This operational calculus is also well adapted to the solution of
the analysis problem in which the system response to a wnit impulse h(t)
and the input function 5(t) ere known and the calculstion of the system
output x(t) is desired. The P-transforms of h(t) and &(t) are
formed and multiplied together by ordinary polynominal multiplication as
indicated in equation (Al). Since this operation is Just the inverse of
the operation shown in table IIT, an illustrative example is not shown.
This method has been found to be a simple and rapid means of applying
the Duhamel process. .

The value of this operational calculus lies in the fact that all
computations remain in the time domain and no translation to the frequency
plane is required. Also, only simple direct arithmetical procedures axe
required for solving practical problems.
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TARLE I
NUMERTICATL CATLCULATION ILLUSTRATING COMPUTATION OF THE
FUNCTION FOR THE RESPONSE TO A UNIT IMPULSE
BY THE FOURIER METHOD
1
[E& =5 % = O-Qﬂ
X ¢x8)
n 2n - 1 (en - 1)wp |g1 deg
1 1 0.64 0.0970 ~-22
2 3 1.92 .0760 -61
3 5 3.20 .0520 -91
h T L .48 .0350 -111
5 9 5.76 .0240 -124
6 11 T.0% .0170 =133
7 13 8.32 .0130 ~140
8 15 9.60 .0100 ~145
9 17 10.89 .0079 -149
10 19 12.16 . 006k -152
11 21 13.45 .0053 -155
12 23 k.72 .00l -157
13 25 16.00 .0038 -159
18 27 17.30 .0033 -160
h(t) = l:-2-9[5).097 cos (0.64t - 22) + 0.076 cos(1.92t - 61) +

7€

0.052 cos(3.2t - 91) + 0.035 cos(4.k8t - 111) +

0.024 cos(5.76t - 124t) + 0.017 cos(7.04t - 133) +

0.013 cos(8.32t - 140) + 0.010 cos(9.6t - 145) +

0.0079 cos(10.89t - 149) + 0.0064 cos(12.16t - 152) +

0.0053 cos(13.45% - 155) + 0.004h4 cos(1k.72t - 157) +

0.0038 cos(16t - 159) + 0.0033 cos(17.3t -16oi]
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TABLE IT
NWMERTCAL CATCULATIONS IILUSTRATTNG SCHUACHER'S METHOD

25

rediant/sec ra“‘, g::’ Ae =[] cos Bg Bx = lgl sin 5
0 0'(1;821? o 0.10000 0
1 - "330 . -
2 .OT45 -63.1'{ 03336 ..32661?71
3 .0555 -86.8 .00310 -.05541
L OOl -10%.0 -.00977 -.03920
5 .0298 -116.6 -01334 - 02664
6 .0225 ~125.8 -.01316 -.01825
7 LOLTh -132.9 -.0118% -.0127%
8 .0139 -138.4 ~.01039 -.00923
BE + 2 o) fi(‘*x)gl rK; : }% (‘”2‘**)3\
J=oy J=op o,
2
+ By ’-‘) 0 Ky b= 0
.gl( )3 J%(mal 3 | it L }
=
- 0 = K2 ()
- & EW) &) e,
— - 7 ) [
9.0 -0.9132% -0.15483 K 1.97049
-0.9132% 0.15201 0 K & 0
-0.15483 (o} 0:03069 ] 0.1520L
K3 = 1.0018
Ky = 6.01865
Kp = 10.0072
Then:
h(t) = % e ain gt = 1.03¢ 07 g1n 0.975%
where
K2
@y -5
and




Inver.
Time histories P-trensforms P “:m
b,
bee T, Cutput, Tt by Refponse ko e Safpanse toa
8(%) x(t) B{x) ix) m‘i(x 4 h“‘?"‘"

0 0 o 0 i 0.00k 0,01k

ll l1 'w . -mo:h L] L

.2 2 00100 22 .00100x2 ,%2:2 ﬁ

.3 3 00292 ] 00292x3 uﬁ 119

A A .D0603 .hx‘; mﬁ .11 17

- 3 00031, oS .0105 +106x7 106

. 4 01557 Jof 015376 ,09%x5 099

T 3 . Sl . 01997 -o77al «OT7

.8 .2 02316 5 .gsﬁxg .066z8 066

.9 a .02hE5 . . 0559 055
1.0 0 .02h35 0 02330 Ol 10 Okl
1.1 o .022%0 0 . 022500c* +LB0xtk 050
1.2 0 01977 c LOLSTT:2 0212 085
1.3 0 01681 0 0168155 JO21x .021
14 0 01395 0 013G oLt 013
1.3 o LOL13L o 0113122 163 016
1.6 0 00503 o 009058 .006x16 .006
1.7 o .00T16 o 00716217 -2 0ChLT -0k
1.8 0 00552 0 .cosmed - -.05%0

B(x) -Ea;)'

j_JO+DW+0W+D-W+UW+U-W}H’+---+U.W.c )

o

o mame- 18

-

01\

0% 0ux + 0.22 + 0.3 + 0.5 + . . . + 0,10

B(x) = 0,01k + 0.072x + 0,10622 + 0,129 + 0. 1XT* + .+ « o = 0.03065 « . « . .

7

e
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Figure 2.- Time response to a unit impulse obtained from Floyd's method
compared to the exact values for the second-order system.
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Figure 3.~ Time response to a unit impulse obtained from the mmerical-
integration method compared to the exact values for the second-order
system.
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Figure 4.- Time response to a unit impulse obtained from the rectangular-
pulse method compared to the exsct values for the second-order system.
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